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Abstract: The female labor force participation rate (FLFPR) remains low globally, despite an equal gender 

distribution. Its improvement is essential for achieving social and economic development by empowering 

women and enhancing demographic dividends (DDs). However, climate change results from human CO2 

emissions. Understanding the impact of FLFPR on CO2 emissions across different DD stages is vital for 

augmenting DDs while minimizing CO2 emissions. This panel study innovatively investigates how FLFPR affects 

CO2 emissions globally and in Pre, Early, Late, and Post DD countries using the extended STIRPAT model from 

1990 to 2019. The study employed Driscoll-Kraay robust standard error regression and the Dumitrescu–Hurlin 

causality test. The empirical results highlight that FLFPR lowers CO2 emissions globally and in all DD panels. 

Additionally, FLFPR exhibits a U-shaped relationship with CO2 emissions during the pre-and late-DD stages but 

an inverse U-shaped relationship during the early- and post-DD stages globally. Furthermore, FLFPR 

demonstrates bidirectional causality with CO2 emissions globally and at all dividend levels. This new evidence 

may assist policymakers in optimizing FLFPR, maximizing the first demographic dividends, and reducing CO2 

emissions simultaneously. 
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1. Introduction 

Climate change is one of the world's most significant challenges, with human-generated carbon dioxide (CO2) 

emissions and other greenhouse gases being crucial contributors. Reducing CO2 emissions is vital to combating 

climate change and environmental issues, as it is the primary greenhouse gas produced by the burning of fossil 

fuels, industry, and land use, accounting for 75% of emissions in 2016  (Ritchie, Hannah, Max Roser, 2020). 

Research has shown that technology, wealth, energy composition, economic framework, and demographic 

diversity influence CO2 emissions (Fan et al., 2006). Studies by Dietz & Rosa (1997); Shi (2003); Cole & Neumayer  

(2004); Martínez-Zarzoso et al. (2007); Brant Liddle & Lung (2010); Liddle  (2014) Indicates that population exerts 

a more substantial influence on CO2 emissions than affluence.  

By 2100, the world's population is expected to have tripled since the mid-1900s, putting a strain on natural 

resources and contributing to climate change  (John Wilmoth,  2022). Lee (2003) and R. D. Lee & Mason (2006) 

This highlights that the "demographic transition" refers to the shift from high fertility and death rates in 

agricultural societies to lower rates in urban and industrial communities, alongside increases in economic 

development and family welfare resources, resulting in a "first dividend." The first dividend comprises four 
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stages: pre, early, late, and post. The pre-stage is characterized by high birth and mortality rates, leading to a 

large youth population. The early stage is marked by a decline in mortality rates, resulting in a larger working-

age population. The late stage sees a decline in birth rates, resulting in a smaller youth population. Finally, the 

post-stage occurs when the working-age population begins to age and retire, decreasing the ratio of workers to 

dependents. The "second dividend" refers to the accumulation of assets by the elderly population, which could 

enhance national income if managed effectively. The global gender composition of the working-age population 

is roughly equal, yet female labor force participation (FLFP) remains consistently low worldwide. Maximizing the 

dividends and economic growth necessitates policies that support various groups, particularly women, in 

entering the workforce. (Lee & Mason, 2019). 

The FLFPR refers to the percentage of women working or actively seeking employment in a given country or 

region (Psacharopoulos & Tzannatos, 1989). It measures the extent to which women are engaged in the labor 

force and is usually expressed as a percentage of the total female population. This rate is an essential indicator 

of gender equality and economic development. It is calculated by dividing the number of women in the labor 

force by the total number of women in the working-age population. FLFP has gained significant attention in 

recent years as women continue to strive for equality in the workplace. Historically, women have met 

tremendous barriers to entering and advancing in the workforce, including discrimination, lack of education and 

training, and societal expectations around gender roles. Increased female labor force participation (FLFP) is a 

crucial driver of economic growth, as it can help increase productivity, reduce poverty, and promote gender 

equality (Tasseven, 2017).  

Also, FLFP has the potential to contribute directly and indirectly to achieving the United Nations Sustainable 

Development Goals (SDGs)(Foster, 2016; Balakrishnan & Dharmaraj, 2018; Denney, 2015; Taheri et al., 2021). 

The SDGs include eradicating poverty and hunger, promoting healthy lifestyles, achieving quality education and 

gender equality, minimizing inequality, ensuring sustainable consumption and production, combating climate 

change, and promoting peace and an inclusive society. FLFP can generate numerous benefits for sustainable 

development's economic, social, and environmental pillars(Choudhry & Elhorst, 2018; Ustabaş & Gülsoy, 2017; 

Appiah, 2018). 

Policymakers frequently ignore the effect of the demographic transition on FLFP. Based on a nation's age 

distribution, the DD stage significantly impacts individual and family life cycles and can change a nation's income 

level. Confirming the nexus between economic progress and DDs, Ahmed et al. (2016) pointed out that most 

countries at the pre-, early-, late-, and post-DD stages are low, low-middle, upper-middle, and upper-income, 

respectively. This study attempts to determine how FLFP affects CO2 emissions at different DD stages and 

globally. This new knowledge is helpful for policymakers to develop effective long-term policies for the country, 

region, and global to optimize global FLFPR, maximize the DDs, and minimize CO2 emissions. 

This study is significant in several ways. First, this study analyzes the effect of FLFPR and Male Labor Force 

Participation Rate (MLFPR) on carbon emissions using the expanded Stochastic Impacts by Regression on 

Population, Affluence, and Technology (STIRPAT) model designed to evaluate human intervention's global 

impact on the environment. Second, this study constructs country panels based on the stages of the first DDs. 

This method enables legitimate long-term policies. Thirdly, this study investigates how gender differences in 

labor force participation rates affect carbon emissions at various stages of the DD. Also, it explores the causal 

relationship among CO2 emissions, population, affluence, energy, and gender-wise labor force participation 

rates for the first time. This study fourthly analyses the effects of gender-wise labor force participation on CO2 

emission at each DD stage to assist in developing effective strategies. Fifth, the first DD era may span 50 years 

or more; every country passes through the Pre, Early, Late, and Post demographical dividend stages accordingly. 

Identifying the dynamics of the impact of gender-wise labor force participation on CO2 emissions at each DD 

stage helps create effective national, regional, or global policies. Experience in late and post-diverse aerial 

dividend countries may help make effective policies in pre- and early-diverse aerial dividend countries. 

Furthermore, the study employs econometric techniques such as slope homogeneity tests, second-generation 

unit root tests, and Westerlund cointegration tests; the panel estimates Driscoll-Kraay standard errors, Newey-
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West Standard Errors, and Dumitrescu-Hurlin Granger non-causality test to overcome the problem of 

heterogeneity and cross-sectional dependence. 

The study is organized into five sections: Section 2, Model Specification and Data Sources, contains the 

theoretical framework, modelling, and data collection. Section 3, Estimation strategy, presents the study's panel 

pretests and estimation techniques. Section 4, Empirical results and discussion, presents findings with a 

discussion. Section 5, Conclusions, provides the ultimate remarks on practical implications and suggestions for 

future research.  

 

2. Model Specification and Data Sources 

2.1 Theoretical framework 

Various models are used to understand the impact of human activities on the environment, including IPAT, 

STIRPAT, ImPACT, ICE-STIRPAT, ImPACTS, IPBAT, and the extended STIRPAT model. The IPAT model, first 

proposed by Paul R. Ehrlich and John P. Holdren in 1971, the quality of the environment was evaluated based 

on Population, Affluence, and Technology. However, the original IPAT model was limited in its use as it relied on 

several assumptions (Shi, 2003). Later, Dietz & Rosa (1997) proposed the stochastic version of IPAT as STIRPAT, 

a model with practical applications refined by York et al. (2003). The STIRPAT model is commonly used for 

empirical research and policy suggestions to reduce environmental degradation by investigating the influence 

of diverse actors on environmental deterioration (Shi (2003); K. Li & Lin (2015); Xu & Lin (2015)). According to 

York et al. (2003), a large group of researchers expanded the STIRPAT model by adding and eliminating specific 

variables to investigate the influence of diverse actors on environmental deterioration. The extended STIRPAT 

model is used in a study to generate empirical evidence of the relationship between FLFP and CO2 emissions. 

The climate is found to have a multiplier or diminutive effect on factor influences: 

                                                 I = P*A*T                                                                         (1) 

Here, I stand for environmental effect, P for population, A for affluence, and T for the influence of technology. 

Taking into account a stochastic form such as the STIRPAT model expands the applicability of the IPAT model. 

                                                 Ii = αi Pi
b Ai

c Ti
d εi                                                                                    (2)  

 

The subscript i denotes the cross-sectional unit (i.e., nation or separate). The constant is α, the parameters that 

need to be valued are b, c, and d, and the error term is εi. When the equation above is rewritten in log-linear 

form, the valued parameters can be considered appropriate elasticities. 

Also, Bekhet & Othman (2017) Converting all the data into logarithms is necessary to reduce the possible 

existence of autocorrelation and heteroscedasticity. Moreover, the log-linear model offers more reliable results 

than the simple model by reducing the sharpness of the data (Shahbaz, 2013).The calculated parameters can be 

considered the corresponding elasticities for the equation above in log-linear form (Liu et al., 2022). 

                                                        L Ii = Lai + bLPi + cLAi + dLTi + Lεi                                                               (3) 

In practical terms, I have typically considered CO2 or GHG emissions. However, researchers are still isolating 

other control factors from εi. 

STIRPAT is a research program that studies the connections between human systems and the ecosystems they 

rely on. The STIRPAT model allows for the inclusion of new factors and identifies the most responsive reasons 

for the policy. It is widely used to study CO2 emissions (Wu et al., 2021). It also has a log-linear form that is 

adaptable to different studies. This study extends the STIRPAT model to meet specific research requirements. 
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Table 1: Summary of panel studies used Extended STIRPAT models with CO2 as a dependent variable. 

Study Panel Period Variables and Results 

   Population 

(P) 

Affluence 

(A) 

Technology 

(T) 

Extended 

Variables 

 

Estimation 

Tools 

Aguir 

Bargaoui et 

al. (2014) 

Global and 

seven 

regionals  

1980 to 

2010 

total 

population (+) 

GDP per 

capita (+) 

energy 

efficiency (+) 

Urbanization (+), 

Kyoto Protocol (-) 

fixed-effects 

Wu et al., 

(2021) 

18 economies 2005 to 

2016 

+ + Energy 

intensity (+) 

Renewable energy 

share (-), Industrial 

structure (+) 

Fossil CO2 

intensity (+) 

fixed-effects, 

Granger 

causality 

Liddle 

(2015) 

Global, OECD 

and Non-OECD 

1971 to 

2011 

+ + Industry energy 

intensity (+) 

share of non-fossil 

fuels in primary 

energy (-) 

CMG, AMG 

Lin et al. 

(2017) 

All non-high-

income,  

Upper middle-

income, 

Lower middle-

income 

1991 to 

2013 

+ + energy 

efficiency (+) 

Labor Productivity 

(-) 

Urbanization level 

(+) 

Urban 

employment level 

(+/-) 

Industrialization 

level (+/-) 

intensity of real 

added (+/-) 

economy 

CO2 emission 

intensity (+) 

fixed-effects,  

Random 

Effect 

Fan et al. 

(2006) 

High, 

Upper-middle, 

Lower-middle 

and 

Low 

Income+ 

World +China 

1975 to 

2000 

+ + Energy use per 

constant 1995 

PPP$ GDP (+) 

Urbanization (+), 

the population 

aged 15–64 

Emissions (+/-) 

PLS 

Koçak & 

Ulucak, 

(2019) 

19 high-

income OECD 

countries 

2003 to 

2015 

Ln Urban (+) + Ln Indust (+) Energy efficiency 

R&D (+) 

Fossil fuel R&D (+) 

Renewable energy 

R&D 

Nuclear energy 

R&D 

Other power and 

storage R&D (+) 

GMM 

Lohwasser 

et al., (2020) 

84 countries 1980 to 

2014 

+ + (-) Urban (+), 

Working (+) 

fixed-effects 

Liu & Xiao 

(2018) 

30 provinces in 

China 

2000 to 

2012 

+ + + energy structure (-

) 

industrial 

structure (+/-) 

total fixed 

investment (+/-) 

SUR 

Ghazali & 

Ali, (2019) 

10 NIC 1991 to 

2013 

+ + + CO2 emission 

intensity (+) 

Trade Openness 

(+) 

UEL (-) 

Productivity of 

labor (-) 

DCCE 
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Khan et al. 

(2021) 

South Asian 

countries 

1985 to 

2016  

Urban 

population (+) 

Trade % of 

GDP (+) 

 

 population ages 

15–64 (+) 

Industry value 

added (-) 

D&K, FMOLS 

Sadorsky 

(2014) 

16 emerging 

countries 

1971 to 

2009 

+ + + Urban (+/-) MG, CCEMG, 

AMG, PCSE 

Martínez-

Zarzoso & 

Maruotti, 

(2011) 

88 

developing 

countries 

1975 to 

2003 

+ + (-) industrial activity 

(+) 

population age 65 

+ (+) 

population (14 and 

64) (+) 

population density 

(+) 

FE, CLSDV, 

GMM 

Li et al., 

(2018) 

30 provinces of 

China 

1999 to 

2014 

+ + + population aging 

(+) 

Urban (+) 

per capita 

consumption (+) 

the industrial 

structure in China 

(+) 

FGLS 

Zhang & 

Zhao (2019) 

30 provinces in 

China 

1996 to 

2015 

+ + RD (-) URB (+) 

ES (+) 

ECL (+/-)  

SL (-) 

 

SYS-GMM 

FE, RE 

Pooled OLS 

Y. Liu et al., 

(2022) 

30 provinces in 

China 

2000 to 

2018 

Urbanization 

level 

(-) 

Per capita 

Disposable 

income (+) 

Scientific and 

technological 

innovation 

level 

Computing (-) 

Industrial 

structure (+) 

Average family 

size 

(-) 

panel 

quantile 

Created by the author 

 

Table 1 summarizes the previous panel studies on CO2 emissions using the extended STIRPAT model. The 

findings of those studies highlighted the impact of explanatory variables. Although few studies have examined 

the impact of labor force participation on CO2 emissions, they are limited to a few countries. 

2.2 Specifications of the Empirical Model  

We developed an empirical model based on the expanded STIRPAT model with gender-specific labor force 

participation rates to analyze the influence of FLFP on carbon emissions at various DD stages. 

𝐶𝑂2 = 𝑓(𝑃𝑂𝑃, 𝐺𝐷𝑃, 𝐸𝑁𝐺, 𝐹𝐿𝑃𝐹𝑅, 𝑀𝐿𝐹𝑃𝑅)                                                                                           (4) 

𝐶𝑜2 =  𝛽0𝑃𝑂𝑃𝛽1𝐺𝐷𝑃𝛽2𝐸𝑁𝐺𝛽3𝐹𝐿𝐹𝑃𝑅𝛽4𝑀𝐿𝐹𝑃𝑅𝛽5𝜀                                                                            (5) 

After applying logarithms, the empirical models of this study are specified as follows: 

LCO2it = L𝛽0  + 𝛽1LPOPit + 𝛽2LGDPit + 𝛽3LENGit + 𝛽4LFLFPRit+ 𝛽5LMLFPRit + Lεit                                    (6) 

LCO2it =  L𝛽0  +  𝛽1LPOPit + 𝛽2LGDPit + 𝛽3LENGit + 𝛽4LFLFPRit+  𝛽5LMLFPRit + 𝛽6LFLFPR2
it+ Lnεit       (7) 

In models (6) and (7), 𝛽1, 𝛽2, 𝛽3 , 𝛽4,, 𝛽5  and 𝛽6d reflect the elasticity relations between the independent variable 

and dependent variables. Every 1% change in LPOP, LGDP, LENG, LFLFPR, LMLFPR, and LFLFPR2 leads to a 𝛽1, 𝛽2, 

𝛽3, 𝛽4,, 𝛽5 or 𝛽6 Change in environmental impact. 

2.3 Data sources 

For our investigation, we collected secondary data from reliable databases. To represent the environmental 

impact in the STIRPAT model, we used per capita CO2 emissions (CO2) data in kilograms from the World Bank's 

World Development Indicators database. We utilized per capita GDP (in constant 2015 U.S. dollars) (GDP) and 

mid-year total population (POP) data from the same source to represent affluence and population within the 

model. For the technology variable, we employed data on energy use (per capita 2020) (ENG) in kilowatt-hours 

from the BP & Shift Data Portal (2022). Additionally, we included the Female Labor Force Participation Rate 
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(FLFPR) and Male Labour Force Participation Rate (MLFPR) variables from the World Development Indicators 

database as extended variables in the STIRPAT model. Table 1 of the supplementary materials describes each 

variable and its data source. 

2.4 Classification of the study panels. 

Ahmed et al. (2016) developed a global classification of countries based on demographic features, using R. D. 

Lee & Mason's (2006) The concept of the first DD as a starting point. Countries are classified as pre-, early, late, 

and post-DD. Based on this, 191 global countries were classified into four stages of DDs in the World Bank's open 

database. Figure 1 depicts a visual representation of the classification described above of countries. 

 

Figure 1: The world through the lens of the demographic typology 

 
Source: Global Monitoring Report 2015/2015, www.worldbank.org/gmr 

 

According to the above classification, 37 countries are in the pre-DD stage, while 62, 54, and 38 are in the Early, 

Late, and post-DD stages. Considering data availability, the study focuses on 118 countries for the Global Panel 

and 20-41-29-28 countries for the Pre, Early, Late, and Post DD country panels from 1990 to 2019. A list of 

selected countries for each DD panel is presented in Table 2 of the supplementary materials,  

2.5 Descriptive Statistics of Study Variables 

The descriptive statistics in logarithms indicate (see Table 2) an upward trend in CO2, GDP, and ENG across the 

DD stages. The average FLFPR remains low and varies throughout all dividend stages, whereas the MLFPR 

remains stable. The correlation (refer to Table 3 in the supplementary materials) between population size and 

carbon emissions fluctuates across the different dividend stages. The standard deviation of CO2 emissions is 

high in all stages, while the standard deviation of MLFPR is low. Additionally, the standard deviation of GDP and 

ENG is lower in the later stages. 

 

Table 2:  Descriptive statistics 

Pre-Dividend Panel      

Variable  Obs  Mean  Std. Dev.  Min  Max 

 LCO2 600 2.322 0.499 1.309 3.744 

 LPOP 600 7.034 0.398 5.98 7.763 

 LGDP 600 2.926 0.299 2.31 3.715 

 LENG 600 3.08 0.422 2.166 4.32 

 LFLFPR 600 1.74 0.212 .929 1.963 

 LMLFPR 600 1.883 0.047 1.766 1.965 

Early-Dividend Panel      

 LCO2 1230 3.062 0.532 1.398 4.402 

 LPOP 1230 7.041 0.847 4.978 9.136 

 LGDP 1230 3.455 0.405 2.264 4.366 

 LENG 1230 3.775 0.525 2.463 5.227 
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 LFLFPR 1230 1.636 0.214 .797 1.952 

 LMLFPR 1230 1.894 0.054 1.689 1.98 

Late-Dividend Panel      

 LCO2 870 3.517 0.426 2.346 4.502 

 LPOP 870 6.96 0.819 5.413 9.149 

 LGDP 870 3.771 0.437 2.769 4.876 

 LENG 870 4.239 0.418 3.045 5.337 

 LFLFPR 870 1.721 0.121 1.364 1.902 

 LMLFPR 870 1.903 0.028 1.817 1.979 

Post-Dividend Panel      

 LCO2 840 3.899 0.2 3.271 4.482 

 LPOP 840 7.079 0.709 5.417 8.516 

 LGDP 840 4.431 0.368 3.12 5.051 

 LENG 840 4.672 0.224 3.944 5.242 

 LFLFPR 840 1.796 0.078 1.512 1.913 

 LMLFPR 840 1.9 0.025 1.822 1.959 

Global Panel      

 LCO2 3540 3.247 0.686 1.309 4.502 

 LPOP 3540 7.029 0.75 4.978 9.149 

 LGDP 3540 3.674 0.633 2.264 5.051 

 LENG 3540 3.984 0.68 2.166 5.337 

 LFLFPR 3540 1.713 0.18 .797 1.963 

 LMLFPR 3540 1.896 0.042 1.689 1.98 

 

Authors calculations  

3. Estimation strategy 

This study follows a panel data analysis procedure to account for heterogeneity, cross-sectional dependence, 

and autocorrelation issues to ensure more reliable results. This panel study applies pretests such as slope 

homogeneity tests, cross-sectional dependence (CD) tests, CADF and CIPS unit root tests, and error-correction-

based panel cointegration tests. The panel estimation methods include Driscoll and Kraay standard errors for 

coefficients appraised by pooled OLS and Newey-West standard errors for OLS regression for linear cross-

sectional time series models—the Dumitrescu-Hurlin Panel individual causality estimation test to identify causal 

relationships.  

3.1 Slope Homogeneity Tests 

Swamy (1970) Developed the framework to find if the slope coefficients of the cointegration equation are 

homogeneous. Hashem Pesaran & Yamagata (2008) improved Swamy's slope homogeneity test and formed two 

"delta" test statistics; ∆̃  and ∆̃𝑎𝑑𝑗. 

  ∆̃= √𝑁 (
𝑁−1 𝑆 ̅−𝑘

√2𝑘
) ~𝑋𝑘

2                              (8) 

 

  ∆̃𝑎𝑑𝑗= √𝑁 (
𝑁−1 𝑆 ̅−𝑘

𝑣 √𝑇𝑘
) ~𝑁(0,1)                             (9) 

 

N represents the number of cross-section units, S represents the Swamy test statistic, and k represents 

independent variables. The standard delta test requires errors not to be autocorrelated. However, a 

Heteroscedasticity and Autocorrelation Consistent (HAC) robust version of the slope homogeneity test has been 

developed to relax the assumptions of homoscedasticity and serial independence. If the p-value of the test is 

less than 5%, the cointegrating coefficients are considered non-homogenous. Increment∆̃  and ∆̃𝑎𝑑𝑗  are fit for 

large and small samples, respectively, where ∆̃𝑎𝑑𝑗  is the "mean-variance bias adjusted" version of ∆ .̃ Therefore, 

the delta test (∆̃ ) does not want the error autocorrelated. Hashem Pesaran & Yamagata (2008) and Blomquist 

http://www.ajssmt.com/


112 Asian Journal of Social Science and Management Technology 

 

& Westerlund (2013) developed a Heteroscedasticity and Autocorrelation Consistent (HAC) robust version of 

the slope homogeneity test By soothing the assumptions of homoscedasticity and serial independence ; 

∆𝑯𝑨𝑪 and (∆𝑯𝑨𝑪)𝒂𝒅𝒋: 

                                  ∆𝑯𝑨𝑪= √𝑁 (
𝑁−1 �̅�𝐻𝐴𝐶−𝑘

√2𝑘
) ~𝑋𝑘

2                                                             (10) 

 

∆̃𝒂𝒅𝒋= √𝑁 (
𝑁−1 �̅�𝐻𝐴𝐶−𝑘

𝑣 √𝑇𝑘
) ~𝑁(0,1)                               (11) 

 

3.2 Cross-sectional dependence tests  

Cross-sectional dependence commonly exists in panel data because the countries are interlinked at the regional 

and global levels. If studies do not control for the cross-sectional dependence, the estimators will be inconsistent 

and biased (Peter C. Phillips and Donggyu Sul, 2003). Therefore, examining the cross-sectional dependence in 

the panel data is essential.  

In doing so, this study uses three different tests to detect cross-sectional dependency among the selected 

variables. N. Bailey, G. Kapetanios (2015) along with Bailey et al. (2019), Chudik & Pesaran (2015), and Pesaran 

(2004)  CD tests are estimated to examine the presence of cross-sectional dependence in residuals of the 

estimable model.  

The following equation of the Bailey, Kapetanios, and Pesaran Cross-Sectional Dependence test is used to 

examine the study variables: 

𝐶𝐷𝐵𝐾𝑃 = √𝑇𝑁(𝑁−1)

2
 �̅�𝑁

^

                               (12) 

Also, the following equation of the CD test is used for examining the cross-sectional dependence suggested by 

Pesaran (2004): 

                           𝐶𝐷 = √
2𝑇

𝑁(𝑁−1)
 (∑ ∑ 𝜌𝑖𝑗

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 )                                                            (13)  

 

Where N represents the sample size, T indicates the period, and 𝜌𝑖𝑗 It shows the estimate of the cross-sectional 

correlation of errors in countries i and j.  

 

3.3 Panel unit root tests  

The first-generation unit root results are ineffective in cross-sectional dependence (Dogan & Seker, 

2016)Therefore, this study employs the augmented cross-sectional IPS (CIPS) and augmented cross-sectional 

ADF (CADF) approaches to investigate the variables' stationarity properties. Moreover, the reliability of the 

results increases when suitable unit root tests are used, with cross-sectional dependence within panel data. 

Pesaran (2007) suggested the following equation of the IPS cross-section augmented version to test the unit 

root: 

∆𝑥𝑖𝑡 = 𝛼𝑖𝑡 + 𝛽𝑥𝑖𝑡−1 + 𝜌𝑖𝑇 + ∑ 𝜃𝑖𝑗
𝑛
𝑗=1 ∆𝑥𝑖,𝑡−𝑗 + 𝜀𝑖𝑡                 (14) 

 

Where ∆ represents the difference operator, 𝑥𝑖𝑡 Shows the analyzed variable, α is an individual intercept, T 

denotes the time trend in the data, and 𝜀𝑖𝑡  is the error term. The Schwarz information criterion (SIC) method 

determines the lag length. For both tests, the null hypothesis is that all individuals are not stationary within time 

series panel data, and the alternative hypothesis is that at least one individual is stationary within time series 

panel data.  

3.4 Panel Cointegration Test 

This study uses the Westerlund cointegration test to observe long-run equilibrium among model variables. 

Westerlund (2007) Suggests four basic panel cointegration tests to explore the alternative hypothesis of 

cointegration for the entire panel or at least one cross-sectional unit. The null hypothesis of this technique is 

"there is no error correction," and if rejected, there is proof of cointegration. The significance of the error 
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correction term is examined using a restricted panel error correction model, and the p-values generated by the 

bootstrapping are robust against cross-sectional dependence. 

Westerlund considers the following error correction model: 

∆𝑌𝑖𝑡 = 𝛿𝑖
′𝑑𝑡 + 𝛼𝑖𝑌𝑖,𝑡−1 + 𝜆𝑖

′𝑋𝑖,𝑡−1 + ∑ 𝛼𝑖𝑗
𝑝𝑖
𝑗=1 Δ𝑌𝑖,𝑡−1 + ∑ 𝛾𝑖,𝑗

𝑝𝑖
𝑗=−𝑞𝑖 Δ𝑋𝑖,𝑡−1 + 𝜀𝑖𝑡             (15) 

 

Where i represents the cross-sections, t represents observations, dt refers to the deterministic components and 

computes the convergence speed to the equilibrium state after an unexpected shock.  

3.5 Panel long-run estimation method 

Efficient and robust estimation with due care of autocorrelation, heteroscedasticity, and cross-sectional 

dependence is necessary because, with their presence, the standard fixed effect model may not generate 

unbiased and efficient outcomes. Wang et al. (2021) emphasized that the existence of cross-sectional 

dependence makes the estimated results from conventional methods such as FMOLS and DOLS no longer 

accurate or unreliable. Therefore, we use Driscoll & Kraay's (1998) standard error technique following the 

methodology of Wang et al. (2021) to estimate long-run coefficients in this study as the studies of Kongbuamai 

et al. (2020), Baloch et al. (2019); Hashemizadeh et al. (2021) and Rahman & Alam, (2022). This sophisticated 

method addresses all the problems of autocorrelation, heteroscedasticity, and cross-sectional dependence in 

the estimated model. Compared to many other methods, Driscoll & Kraay's (1998) standard error technique 

provides various additional benefits: firstly, this can be adopted in the case of unbalanced panel data; secondly, 

this approach can be used in the case of missing values of the dataset; thirdly, it is a non-parametric procedure 

having flexible features and greater time dimension; finally, and most importantly, this approach can accurately 

cure about heteroscedasticity, autocorrelation, and cross-sectional dependence issues (Hoechle (2007); Rahman 

& Alam (2022); Wang et al. (2021); Kongbuamai et al. (2020); Baloch et al. (2019)). 

After the estimation of Driscoll and Kraay's (1998) standard error technique, the robustness of the findings is to 

be checked through another well-known panel standard error estimating technique. The Newey-West standard 

errors regression (Newey & West, 2010) performs according to the methodology of Wang et al. (2021), and the 

model also addresses the issues of autocorrelation, heteroscedasticity, and cross-sectional dependence in the 

models efficiently and effectively. 

3.6 Dumitrescu and Hurlin panel causality test  

Dumitrescu & Hurlin (2012) proposed a modified version of the Granger causality test known as the 

heterogeneous panel Granger non-causality test, which accounts for heterogeneity. This test is adaptable for 

both T > N and T < N, and it takes unobserved heterogeneity in data into account, utilizing the Vector 

Autoregressive (VAR) framework on stationary data. Furthermore, it conducts separate regressions for each 

cross-section to ascertain causal relationships among variables. 

 

4. Empirical results and discussion 

In the Pesaran and Yamagata slope homogeneity test, the null hypothesis posited that slope coefficients are 

homogeneous. Delta estimates (Table 4, Supplementary Materials) were significant across all panels at the 1% 

level. Heterogeneity was identified among sample countries, prompting this study to utilise appropriate panel 

techniques to address the issue of heterogeneity.  

Three tests were performed to ascertain cross-sectional dependence among the studied variables. The results 

(Table 5, Supplementary Materials) presented substantial evidence of cross-sectional dependence for most 

panels. The variables LCO2, LPOP, LGDP, LENG, LFLFPR, and LMLFPR exhibited interdependence globally across 

all demographic dividend stages. Consequently, a cross-sectional dependency problem arises within the study 

panels. 

The second-generation CADF and CIPS panel unit root tests suit data exhibiting heterogeneity and cross-

sectional dependency issues. As the results in Table 6 of the supplementary materials indicate, the variables 

LCO2, LPOP, LGDP, LENG, LFLFPR, and LMLFPR are non-stationary at their levels but stationary at the first 

difference. In other words, all variables in this study are integrated at level 1 across all study panels. 
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Table 3 presents the findings of the Westerlund cointegration test for two models: the linear model featuring 

only the main effects and the nonlinear model incorporating LFMLFPR2. The results suggest that the Gt and Pt 

statistics null hypothesis in both the linear and nonlinear models is rejected at the 1% significance level (based 

on a robust p-value). Therefore, we have evidence to conclude that cointegration exists for at least one of the 

cross-section units in both models. 

 

Table 3: Results of the Westerlund (2007) cointegration test. 

Ho: No cointegration                            

Pre-Dividend Panel 

Statistic Linear Model Nonlinear Model 

 Value Z-Value Value Z-Value 

Gt -4.097a   -8.345 -4.401a -8.655 

Ga              -3.276  4.920                      -2.087 6.310   

Pt -12.786a -3.577   -13.156a -3.058   

Pa                     -3.809 2.375                      -2.017 4.081   

Early-Dividend Panel 

Gt -3.235a   -6.522 -3.507a -6.781 

Ga                     -5.519   5.174 -4.088 7.499 

Pt -16.275a   -3.460   -18.558a -4.145 

Pa                     -4.408   2.918   -3.645 4.652 

Late-Dividend Panel 

Gt -3.097a -4.756 -3.301a -4.619 

Ga                     -6.933 3.360                      -7.627 4.022 

Pt                   -11.390 -1.029 -14.864a -2.863 

Pa                     -5.764 1.536                     -6.775 1.988 

Post-Dividend Panel 

Gt -2.759a -2.914 -3.326a -4.669 

Ga                     -6.942   3.295                     -7.355 4.125   

Pt -11.565c  -1.316                     -9.817 1.199 

Pa                     -4.852   2.115                     -4.707 3.203 

Global Panel 

Gt -3.234a   -11.057   -3.565a -12.124 

Ga                    -7.135   6.491   -6.772 9.227 

Pt -29.696a   -7.575   -30.646a -6.331 

Pa                    -6.717   1.796   -5.972   5.006 

  “a “p<.01, “b “p<.05, “c “p<.1 

Authors calculations  

Table 4: Driscoll-Kraay standard errors estimate. 
Dependent 

Variable -

LCO2 

Linear Model Nonlinear Model 

Panel Pre Early Late Post Global Pre Early Late Post Global 

Independent 

Variables 

Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. 

LPOP -0.078b     0.059a     0.077a  0.043a     0.051a    -0.118a     0.058a     0.045a    .028a     0.053a 

LGDP     0.648a     0.292a     0.136a  0.061b     0.108a     0.806a     0.287a     0.159a   0.067b     0.108a 

LENG 0.639a     0.731a     0.885a  0.603a     0.888a     0.538a     0.727a     0.881a   0.574a     0.886a 

LFLFPR -0.140a    -0.172a    -0.068c -0.297a    -0.208a    -3.894a     0.312b   -10.856a 12.818a     0.393b 

LFLFPR2          1.244a    -0.163a     3.269a  -3.762a    -0.194a 

LMLFPR -1.200a    -0.650a    -1.495a -0.606b    -0.985a    -2.009a    -0.627a    -1.677a  -0.133    -0.949a 

Cons 1.513a     0.388a     1.680a  2.192a     1.176a     5.873a     0.032    11.015a -9.884a     0.647a 

Num of obs 600 1230 870 840 3540 600 1230 870 840 3540 

Num of 

groups 

20 41 29 28 118 20 41 29 28 118 
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F (5, 29) 11467.39 12415.46 18154.15 929.17 42935.22 13359.56 11469.66 16304.11 3177.4

0 

57044.0

1 

Prob > F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

R-squared 0.9026 0.9201 0.8947 0.5164 0.9443 0.9169 0.9204 0.9108 0.5337 0.9445 

Root MSE 0.1565 0.1507 0.1388 0.1394 0.1619 0.1447 0.1505 0.1278 0.1370 0.1617 

“a “p<.01, “b “p<.05, “c “p<.1 

Authors calculations  

The estimates of the Driscoll-Kraay standard error regression are presented in Table 4 under two parts: the linear 

and nonlinear models. The findings of the linear model can be highlighted as follows: 

 The findings indicate a significant relationship between total population (LPOP) and CO2 emissions 

(LCO2) across all study panels. The elasticities are -7.8%, 5.9%, 7.7%, and 4.4% during the pre-, early, late, and 

post-dividend stages. This finding is consistent with recent studies that have observed a positive relationship 

between population and CO2 emissions in most countries, while noting a negative relationship in some 

countries. Also, The findings of Holdren (1971), Dietz & Rosa (1997),  Shi (2003), Zhu & Peng (2012), Liddle, 

(2014),  Yang et al. (2015), Yeh & Liao (2017a)), Yeh & Liao, (2017b), Sulaiman & Abdul-Rahim, (2018), Ghazali & 

Ali, (2019), Lohwasser et al., (2020) highlight that the population increases carbon emissions. Nevertheless, our 

findings confirm that population reduces carbon emissions per capita in countries at the pre-demographic 

dividend stage. 

 The per capita GDP of a country is positively correlated with its per capita CO2 emissions across all study 

panels. The effect of per capita GDP on CO2 emissions is statistically significant at the 5% level. Furthermore, 

the research revealed that the elasticities between GDP and CO2 emissions are 64.8%, 29.2%, 13.6%, and 6.1% 

during the pre-, early, late, and post-DD stages, highlighting the importance of considering a country's 

demographic stage when evaluating the relationship between GDP and carbon dioxide emissions.  The 

conclusions of Aguir Bargaoui et al. (2014), Yeh & Liao (2017b), Koçak & Ulucak (2019), Lohwasser et al. (2020), 

Wu et al. (2021) Conform to the findings. 

 Energy usage has a significant positive impact on CO2 emissions, as supported by the conclusions of 

Zaman & Moemen (2017), Fan et al. (2006), Rahman & Kashem (2017), and X. P. Zhang & Cheng (2009). Burning 

non-renewable energy sources like coal, oil, and natural gas releases carbon dioxide (Ahmad et al., 2016) and 

other greenhouse gases into the air, contributing to climate change. However, renewable energy sources like 

solar, wind, hydro, and geothermal reduce CO2 emissions. (Anwar et al. (2022); Zafar et al. (2020); Cai et al. 

(2018)). The study found that the elasticities between ENG and CO2 emissions are 63.9%, 73.1%, 88.5%, and 

60.3% at the pre-, early, late, and post-DD stages. These values highlight the increasing pattern of the Impact of 

ENG use on CO2 emissions at the pre-, early, and late DD stages and go down at the post-DD stage. 

 According to the linear model estimates, increasing the FLFPR by 1 unit reduces CO2 emissions by 0.14, 

0.172, 0.07, and 0.30 at the pre-, early, late, and post-DD stages, respectively. The findings of numerous studies 

on countries and regions confirm our results. Wang (2023) determined that a 1 unit increase in the ratio of FLFPR 

is associated with a 0.30 per cent decrease in CO2 emissions per capita based on panel data from 16 European 

countries in the post-demographic dividend stage, covering the years 2000 to 2016. Also, according to the 

findings of Quz Zaman et al. (2021), S. Zaman et al. ( 2022), S. Zaman et al. (2022b), Khan (2023), Mehmood 

(2022),  Bilgili et al.  (2022), the increase of FLFPR would significantly reduce carbon emissions in China, Pakistan, 

South Asian countries, and Asian countries, respectively. Identifying how FLFP reduces CO2 emissions is crucial. 

Previous studies suggest the following factors are significant: 

   In 2016, the Energy (73.2%), Agriculture, Forestry, and Land Use (18.4%), Cement and Chemical 

Industries (5.2%), and Waste (3.2%) sectors accounted for global GHG emissions, with 78% derived from carbon 

emissions)(Gosh, 2020). FLFP can manage these sectors and reduce emissions, especially since fossil fuels are 

the primary carbon emitters. Burke & Dundas (2015)  employing national-level longitudinal data for up to 175 

countries between 1990 and 2010 demonstrated that female labor force participation (FLFP) is linked to 

reductions in household biomass energy use and can affect the decision to adopt biogas technology. Also, the 

study of Yasmin & Grundmann (2020) showed that older, educated, financially empowered women with more 

excellent agency and resource control strongly influenced the decision to adopt biogas technology. 
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 Mujeed et al. (2021) shows that technological innovations and renewable energy consumption 

positively impact women's autonomy within China's sustainable development agenda. As the International 

Labor Organization states, women's employment in renewable energy can also mitigate climate change by 

encouraging renewable energy utilization and decreasing fossil fuel dependence.  (Policy Brief, 2015). 

  The behavior of female workers can influence the reduction of carbon emissions. Women are 

predominant in several professions known as "pink-collar fields," such as teaching and nursing. In developing 

nations, women are also engaged in labor-intensive tasks. This approach can decrease carbon emissions and 

energy consumption. 

 Population growth leads to more carbon emissions (Dodson et al. (2020), O'Neill et al. (2012)). When 

women join the workforce, they tend to have fewer children, which reduces population growth and subsequently 

reduces carbon emissions. 

 Women's empowerment is crucial in today's world. Increasing FLFP is a global strategy to empower 

women. Research shows that gender equality and women's empowerment positively impact the environment 

(Bilgili et al., (2022b), including using renewable energy, reducing deforestation, and better water management. 

Studies also indicate that nations with higher political status for women have lower CO2 emissions per capita  

(Ergas & York., 2012). 

  Moreover, companies with women in senior management are more inclined to adopt environmentally 

friendly practices and invest in renewable energy (Noland & Kotschwar, 2016). Women also advocate for policies 

such as investing in clean energy, regulating carbon emissions, and safeguarding natural resources (Warner & 

Corley, 2017). Enhancing FLFP empowers women in multiple ways and significantly impacts the economy, liberal 

arts, and environmental footprint.  According to Khan (2023), independent women have more education and 

work experience, which reduces carbon output. 

 The male labour force participation rate significantly negatively affects carbon emissions across all 

dividend stages and globally. An increase of 1% in the MLFPR results in reductions of CO2 emissions by -1.2%, -

0.65%, -1.5%, and -0.61% at the pre-, early, late, and post-DD stages, respectively. According to the linear model 

estimates, the MLFPR demonstrates the most substantial negative impact on carbon emissions.  Especially at 

pre and late stages, elasticity is more than one. But, according to Bilgili et al.  (2022), the male labor force in the 

agricultural and industrial sectors can increase CO2 emissions.  

 In the pre-demographic dividend stage, the linear model accounts for 90% of the variation in CO2 emissions. 

GDP and ENG contribute to increasing CO2 emissions, whereas POP, FLFPR, and MLFPR lead to a reduction in 

CO2 emissions. At the early DD stage, the linear model explains 92% of the total variation in CO2 emissions; 

among the independent variables, POP, GDP, and ENG enhance the impact on CO2 emissions, while FLFPR and 

MLFPR decrease them. The linear model accounts for 89% of the total variation in CO2 emissions and reveals 

the same impact patterns at the late demographic stage. However, the linear model accounts for only 52% of 

CO2 emissions at the post-dividend stage. The linear model describes 94% of global CO2 emissions. The 

estimates from the nonlinear model employing Driscoll-Kraay standard errors regression are presented in Table 

11, highlighting that: 

 The nonlinear model illustrates the dynamic impact of FLFPR at each DD stage. At the Pre, Early, Late, 

and Post DD stages, FLFPR exhibits a U-shape, Inverse U-shape, U-shape, and Inverse U-shape impact on CO2 

emissions, respectively. Globally, it shows an Inverse U-shape impact on CO2 emissions. According to the 

estimates, the coefficients of LFLFPR and LFLFPR2 are -3.894 and 1.244, 0.312 and -0.163, -10.856 and 3.269, 

and 12.818 and -3.762 at the pre, early, late, and post DD stages, respectively. Moreover, the impact of FLFPR is 

the highest among all study variables.   

The results of the Driscoll-Kraay standard errors regression for the global panel estimate in Table 11, along with 

the estimates from both linear and nonlinear models, yield the following findings: 

 According to the linear model, the elasticities of POP, GDP, ENG, FLFPR, and MLFPR are 5.1%, 10.8%, 

88.8%, -20.8%, and 98.5%, respectively. Furthermore, the linear model's estimated elasticities for POP, GDP, 

ENG, and MLFPR are nearly identical. The estimates for LFLFPR and LFLFPR^2 are 39.3% and -19.4%, respectively. 
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MLFPR is the most significant factor influencing global CO2 emissions, while FLFPR exhibits an inverse-U shape 

dynamic impact on CO2 emissions. 

Table 7 of the supplementary materials presents the estimates of the linear and nonlinear models using Newey-

West standard error regression to verify the robustness of the Driscoll-Kraay standard error regression 

estimates. The estimated coefficient values are identical to those of the Driscoll-Kraay standard error regression; 

however, the coefficients' t-statistics are significantly higher than those of the Driscoll-Kraay standard error 

regression estimates. According to the Newey-West Standard Errors Estimates, all explanatory variables of the 

linear and nonlinear models are significant at the 1% level. 

Table 5 illustrates the analysis of the Dumitrescu-Hurlin panel non-causality test. Our empirical findings 

demonstrate a bidirectional causality between population and per capita CO2 emissions across all study panels. 

Per capita GDP exhibits bidirectional causality with per capita CO2 emissions, except the post-dividend panel, 

indicating unidirectional causality from GDP to CO2 emissions at the post-DD stage. Across all study panels, per 

capita energy use shows bidirectional causality with carbon emissions. The female labour force participation 

rate (FLFPR) exhibits bidirectional causality with CO2 emissions at all demographic stages and globally. 

Moreover, there is evidence of bidirectional causality relationships between male labor force participation and 

carbon emissions. Additionally, at the four demographic dividend stages and globally, the population shows 

bidirectional Granger causality with GDP, energy use (ENG), FLFPR, and male labor force participation rate 

(MLFPR) at a 1% significance level. GDP exhibits a bidirectional causal relationship with ENG, FLFPR, and MLFPR. 

Energy usage shows a bidirectional causal relationship with male and female labor force participation. 

Highlighting an interdependency between gender-based labor force participation rates, FLFPR demonstrates 

bidirectional causality with MLFPR. These results corroborate the findings from the Driscoll-Kraay standard error 

estimates. 

Table 5: Dumitrescu Hurlin panel causality test results 

Causality Panel 

 Pre-Dividend Early-Dividend Late-Dividend Post-Dividend Global 

 W-Stat. W-Stat. W-Stat. W-Stat. W-Stat. 

LPOP →   LCO2  5.91036a  6.46207a  7.68674a  7.22888a  6.85149a 

LCO2 →   LPOP  16.3182a  12.7717a  19.3645a  6.73612a  13.5609a 

LGDP →   LCO2  5.04130a  5.43070a  8.40192a  5.37466a  6.08162a 

LCO2 →   LGDP  4.06628a  3.44782a  7.67570a  2.05123  4.26031a 

LENG →   LCO2  2.84040a  3.74435a  4.58303a  4.76041a  4.03835a 

LCO2 →   LENG  3.28207a  3.55188a  5.18437a  3.99834a  4.01330a 

LFLFPR →   LCO2  4.99507a  5.02108a  5.26136a  3.61452a  4.74196a 

LCO2 →   LFLFPR  2.30829a  3.62920a  3.04853a  3.95420a  3.33973a 

LMLFPR →   LCO2  4.72436a  3.17272a  3.86854a  3.09305b  3.58781a 

LCO2 →   LMLFPR  3.48231a  3.92440a  4.26767a  4.90802a  4.16723a 

LGDP →   LPOP  14.0715a  24.8025a  22.1136a  11.9727a  19.2785a 

LPOP →   LGDP  8.61941a  6.69086a  8.92700a  4.72481a  7.10077a 

LENG →   LPOP  9.07943a  17.2033a  12.6827a  7.26536a  12.3572a 

LPOP →   LENG  6.40412a  6.12195a  7.12084a  6.38943a  6.47873a 

LFLFPR →   LPOP  30.4652a  23.6234a  7.23363a  5.54287a  16.4647a 

LPOP →   LFLFPR  7.15568a  6.18820a  5.46381a  6.83721a  6.32815a 

LMLFPR →   LPOP  25.0918a  17.2919a  8.97930a  7.60309a  14.2720a 

LPOP →   LMLFPR  5.84980a  6.85748a  6.82739a  6.25515a  6.53637a 

LENG →   LGDP  3.08842a  4.30724a  6.69898a  2.68196  4.30280a 

LGDP →   LENG  6.18147a  4.47700a  6.47053a  6.68370a  5.77945a 

LFLFPR →   LGDP  5.32654a  4.93106a  5.07400a  3.62696a  4.72377a 

LGDP →   LFLFPR  6.98918a  4.40772a  4.24196a  6.41768a  5.28146a 

LMLFPR →   LGDP  3.37131a  4.51786a  5.50511a  2.72171  4.13995a 

LGDP →   LMLFPR  5.49906a  6.79916a  8.20976a  5.90422a  6.71312a 

LFLFPR →   LENG  6.04307a  3.21631a  4.54856a  4.06339a  4.22384a 

LENG → LFLFPR  3.63703a  4.15946a  3.64879a  4.70409a  4.07464a 
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LMLFPR   → LENG  5.71592a  3.01438a  3.91250a  3.42137a  3.78957a 

LENG →   LMLFPR  3.24057a  3.26970a  4.56685a  4.67761a  3.91763a 

LMLFPR → LFLFPR 5.63254a  6.23604a 7.40343a  6.07181a  6.38168a 

LFLFPR →   LMLFPR 5.34725a  4.55737a 4.99423a 4.80429a  4.85720a 

“a “p<.01, “b “p<.05, “c “p<.1 

Authors calculations 

 

5. Conclusions and Policy Recommendations 

Population growth contributes to rising CO2 emissions globally and at all development (DD) stages except pre-

DD. GDP and energy generation (ENG) also elevate carbon emissions globally and at every DD stage. Conversely, 

the female labor force participation rate (FLFPR) diminishes CO2 emissions globally and at all DD stages. The 

connection between FLFPR and CO2 emissions exhibits a U-shape in pre- and late-DD stages, an inverse U-shape 

globally, and early- and post-dividend stages. The male labor force participation rate (MLFPR) similarly reduces 

carbon emissions across all DD stages. The estimations are applicable for policy development, as evidenced by 

the Westerlund cointegration test. The Dumitrescu-Hurlin panel non-causality test verifies long-run stability and 

bidirectional causality among the study variables in all panels. 

Countries must formulate strategies to manage optimal population size in the long term, considering the DD 

stage and population transition process. FLFP lowers fertility rates and curtails population growth, decreasing 

carbon emissions. Policies that promote low-carbon lifestyles and sustainable practices are essential for reducing 

emissions. Education on lowering carbon emissions, incentives for sustainable behaviors, carbon tax 

implementation, and sustainable urban planning policies can aid in achieving these goals. 

GDP influences CO2 emissions differently across various demographic phases. The EKC hypothesis predicts a 

long-term balance between environmental protection and economic growth. Research on national carbon 

emissions and GDP per capita supports this hypothesis. FLFP enhances GDP, while FLFPR may lower carbon 

emissions by fostering economic growth. Policies to reduce CO2 emissions should focus on sustainable business 

practices, industrial emission regulations, green transport and urban planning, and sustainable consumption and 

production patterns. 

According to a study, reducing individual energy usage can significantly decrease carbon emissions, so policies 

should be implemented to lower energy consumption. There are three energy mixes: fossil fuels, 

renewable/atomic energy, and a combination. Fossil fuels are the primary source of carbon emissions, whereas 

renewable/nuclear energy is regarded as clean. FLFP can empower women's socioeconomic status and promote 

the adoption of cleaner energy sources and technologies, ultimately reducing carbon emissions. Increased 

investment in renewable energy sources such as solar, wind, and hydropower may be achieved through financial 

incentives and government research. A comprehensive strategy to reduce carbon dioxide emissions must 

include boosting investment in renewable energy, implementing energy efficiency measures, and establishing 

financial incentives for businesses and individuals to lower their energy consumption. 

Enhancing FLFPR is essential for reaping the benefits of FLFP while minimizing environmental impacts. 

Policymakers should identify the DD stage to promote FLFP while managing adverse effects such as increased 

commuting, air pollution, reduced home gardening and child-rearing time. FLFP can decrease CO2 emissions by 

influencing women's behavior, adopting eco-friendly practices, and bolstering employment. Optimizing FLFPR 

aids in achieving sustainable economic, societal, and environmental development goals. However, it is necessary 

to overcome institutional and cultural barriers to attain higher FLFPR. 
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 Supplementary Materials  

Table 1: Study variables and data sources 

Label Variable Definition Unit Source 

CO2 Carbon dioxide 

emission (per capita)  

Carbon dioxide emissions are 

those stemming from the 

burning of fossil fuels and the 

manufacture of cement. 

Metric tons WDI (12/22/2022) 

POP Total mid-year 

population 

The total population is based on 

the de fecto definition of 

population, which counts all 

residents regardless of legal 

status or citizenship. The values 

shown are midyear estimates. 

count WDI (12/22/2022) 

GDP Gross Domestic 

Product (per capita)  

Gross domestic product divided 

by midyear population 

Constant 

2015 US$ 

WDI (12/22/2022) 

ENG Energy use (per 

capita2020) 

Energy use refers to primary 

energy before transformation to 

other end-use fuels. 

kWh Our World in Data 

based on B.P. & 

Shift Data Portal 

(2022) 
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FLFPR Female Labor Force 

Participation Rate 

The female labor force 

participation rate is % of the 

female population ages 15-64. 

(Modeled ILO estimate) 

% WDI ((12/22/2022) 

MLFPR Male Labor Force 

Participation Rate (% 

of male population 

ages 15-64) (modeled 

ILO estimate) 

The male labor force 

participation rate is % of the male 

population ages 15-64. (Modeled 

ILO estimate) 

% WDI ((12/22/2022) 

Created by the Autor 

 

Table 2:  List of countries selected for the study panels. 

Table 2.1: List of 20 selected countries for the pre-demographic dividend panel. 

Benin Cote d'Ivoire Mauritania Sudan 

Burundi Gambia, The Mozambique Tanzania 

Cameroon Iraq Niger Togo 

Central African Republic Kenya Senegal Uganda 

Congo, Rep. Malawi Sierra Leone Zambia 

Source: Created by the author based on the WDI (2022), https://data.worldbank.org/country/V1. 

 

Table 2.2: List of 41 selected countries for the early-demographic dividend panel. 

Argentina Eswatini Lao PDR Paraguay 

Bahrain Gabon Lesotho Peru 

Bangladesh Ghana Mexico Philippines 

Belize Guatemala Myanmar Rwanda 

Bolivia Haiti Namibia Samoa 

Botswana Honduras Nepal Saudi Arabia 

Dominican Republic India Nicaragua South Africa 

Ecuador Indonesia Pakistan Tonga 

Egypt, Arab Rep. Iran, Islamic Rep. Panama Türkiye 

El Salvador Jordan Papua New Guinea Yemen, Rep. 

   Zimbabwe 

Source: Created by the author based on the WDI (2022), https://data.worldbank.org/country/early-

demographic-dividend 

 

Table 2.3: List of 29 selected countries for the late-demographic dividend panel. 

Albania Fiji Morocco Uruguay 

Armenia Guyana Poland Vietnam 

Brazil Ireland Romania  

Brunei Darussalam Jamaica Russian Federation  

Chile Kazakhstan Sri Lanka  

China Kyrgyz Republic Thailand  

Colombia Malaysia Trinidad and Tobago  

Costa Rica Mauritius Tunisia  

Source: Created by the author based on the WDI (2022), https://data.worldbank.org/country/late-demographic-

dividend 

Table 2.4: List of 28 selected countries for the post-demographic dividend panel. 

Australia Denmark Korea, Rep. Singapore 

Austria Finland Luxembourg Spain 

http://www.ajssmt.com/
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https://data.worldbank.org/country/early-demographic-dividend
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Barbados France Malta Sweden 

Belgium Germany Netherlands Switzerland 

Bulgaria Greece New Zealand Ukraine 

Cuba Italy Norway United Kingdom 

Czech Republic Japan Portugal United States 

Source: Created by the author based on the WDI (2022), https://data.worldbank.org/country/post-

demographic-dividend 

Table 3: Pairwise correlation 

       
Correlation      

Probability LCO2  LPOP  LGDP  LENG  LFLFPR  LMLFPR  

Pre-Dividend Panel       

LCO2  1.000000      

 -----       

LPOP  0.066639- 1.000000     

 0.1029 -----      

LGDP  0.871034 0.204641 1.000000    

 0.0000 0.0000 -----     

LENG  0.904200 0.162207 0.805542 1.000000   

 0.0000 0.0001 0.0000 -----    

LFLFPR  -0.692389 -0.038151- -0.643808 -0.642367 1.000000  

 0.0000 0.3509 0.0000 0.0000 -----   

LMLFPR  -0.337747 0.352996 -0.190232 -0.199692 0.334394 1.000000 

 0.0000 0.0000 0.0000 0.0000 0.0000 -----  

       
Early-dividend Panel       

LCO2  1.000000      

 -----       

LPOP  -0.013562- 1.000000     

 0.6347 -----      

LGDP  0.891049 -0.212315 1.000000    

 0.0000 0.0000 -----     

LENG  0.947960 -0.069757 0.909811 1.000000   

 0.0000 0.0144 0.0000 -----    

LFLFPR  -0.412103 -0.208551 -0.254548 -0.351235 1.000000  

 0.0000 0.0000 0.0000 0.0000 -----   

LMLFPR  -0.168758 0.375284 -0.227125 -0.102413 0.203709 1.000000 

 0.0000 0.0000 0.0000 0.0003 0.0000 -----  

       
 

 

 

      Late-Dividend Panel 

LCO2  1.000000      

 -----       

LPOP  -0.088424 1.000000     

 0.0091 -----      

LGDP  0.721194 -0.260005 1.000000    

 0.0000 0.0000 -----     

LENG  0.934095 -0.203120 0.745840 1.000000   

 0.0000 0.0000 0.0000 -----    

LFLFPR  0.221149 0.258870 0.071407 0.229395 1.000000  

 0.0000 0.0000 0.0352 0.0000 -----   
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LMLFPR  -0.009393- 0.186879 0.255588 0.032705- 0.067502 1.000000 

 0.7820 0.0000 0.0000 0.3353 0.0465 -----  

       
 

 

      Post-Dividend Panel 

LCO2  1.000000      

 -----       

LPOP  0.122908 1.000000     

 0.0004 -----      

LGDP  0.466154 -0.049833- 1.000000    

 0.0000 0.1490 -----     

LENG  0.689307 -0.033168- 0.656869 1.000000   

 0.0000 0.3370 0.0000 -----    

LFLFPR  0.120402 0.073885- 0.376794 0.316497 1.000000  

 0.0005 0.0323 0.0000 0.0000 -----   

LMLFPR  0.079265 -0.101699 0.510680 0.236530 0.411386 1.000000 

 0.0216 0.0032 0.0000 0.0000 0.0000 -----  

Global Panel       

CO2  1.000000      

 -----       

LPOP  -0.003192- 1.000000     

 0.8494 -----      

LGDP  0.885995 -0.086781 1.000000    

 0.0000 0.0000 -----     

LENG  0.966684 -0.043501 0.907622 1.000000   

 0.0000 0.0096 0.0000 -----    

LFLFPR  -0.093030 -0.043242 0.055530 -0.031673- 1.000000  

 0.0000 0.0101 0.0009 0.0595 -----   

LMLFPR  0.006458- 0.241690 0.086012 0.064798 0.225700 1.000000 

 0.7009 0.0000 0.0000 0.0001 0.0000 -----  

       
       All estimated correlation coefficients are significant at 5% except the values indicated in the "- "sign 

Authors Calculations  

Table 4: Results of the slope homogeneity tests. 

Test Statistic Pre-Dividend 

Panel 

Early-Dividend 

Panel 

Late-Dividend 

Panel 

Post-Dividend 

Panel 

Global  

Panel 

∆̅ 21.195a 28.639a 23.274a 24.284a 50.404a 

∆̅𝒂𝒅𝒋 24.206a 32.708a 26.581a 27.734a 57.565a 

∆𝑯𝑨𝑪 23.259a 21.684a 39.803a 25.072a 57.091a 

(∆𝑯𝑨𝑪)𝒂𝒅𝒋 26.563a 24.765a 45.458a 28.634a 65.202a 

 

H0: slope coefficients are homogenous. a represents statistical significance at 1%.  

∆̅ and ∆ a̅dj represent the "simple" and "mean-variance bias adjusted" slope homogeneity tests, respectively 

(Pesaran, Yamagata. 2008. Journal of Econometrics). 

∆𝐻𝐴𝐶  and (∆𝐻𝐴𝐶)𝑎𝑑𝑗 represent the "Heteroscedasticity and Autocorrelation Consistent" versions of "simple" and 

"mean-variance bias adjusted" slope homogeneity tests, respectively (Blomquist, Westerlund. 2013. Economic 

Letters). 

“a “p<.01, “b “p<.05, “c “p<.1 
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Table 5: Cross-sectional dependence test 

Exponent estimation test - Estimation of cross-sectional exponent (alpha) 

                                              0.5 <= alpha < 1 implies solid cross-sectional dependence. 

variable Pre-Dividend Early-Dividend Late-Dividend Post-Dividend    Global 

LCO2     0.752     1.004 0.884       0.971     0.830 

LPOP     1.006     1.005    1.005 1.005     1.004 

LGDP     0.989     0.991        0.995 1.005     0.998 

LENG     0.723     0.991        0.909 0.963     0.878 

LFLFPR     0.428     0.965        0.914 1.005     0.971 

LMLFPR     0.854     0.973        0.817 0.885     0.952 

Pesaran's (2015) test for weak cross-sectional dependence test - H0: errors are weakly cross-sectional 

dependent. 

LCO2    21.787a    62.623a    15.741a      42.211a     40.421a 

LPOP    74.928a  153.226a    42.862a   63.095a   330.290a 

LGDP    24.960a    97.913a        69.977a   90.420a   274.364a 

LENG    12.524a    66.021a    22.543a   25.467a     61.156a 

LFLFPR    -0.801    15.422a     7.946a   51.404a     49.213a 

LMLFPR    25.050a    43.472a    19.826a     4.929a     72.172a 

Pesaran's (2004) cross-sectional dependence (CD)test 

LCO2    21.790a    62.620a    15.740a     42.210a     40.420a 

LPOP    74.930a   153.230a    42.860a 63.090a   330.290a 

LGDP    24.960a    97.910a    69.980a 90.420a   274.360a 

LENG    12.520a    66.020a    22.540a 25.470a     61.160a 

LFLFPR    -0.800    15.420a     7.950a 51.400a     49.210a 

LMLFPR    25.050a    43.470a    19.830a   4.930a     72.170a 

“a “p<.01, “b “p<.05, “c “p<.1 
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Table 6: Results of the CADF and CIPS panel unit root tests. 

 Pre-Dividend Panel Early-Dividend Panel 

Variable CADF CIPS  CADF CIPS  

 Cons Trend Cons Trend  Cons Trend Cons Trend  

LCO2  -1.036 -2.509 -2.217c -2.805c  

I (1) 

 -1.311 -1.817 -1.776 -2.038  

I (1) ΔLCO2 -3.859a -3.981a -5.289a -5.390a -3.372a -3.673a -4.720a -4.888a 

LPOP -2.772a -1.719 -2.699a  -1.994  

I (1) 

-2.565a -2.447 -1.721 -1.874  

I (1) Δ LPOP -4.197a -5.613a -1.976 -3.089a -4.657a -4.904a -2.520a -3.264a 

LGDP  -0.887 -1.902 -1.729  -2.142  

I (1) 

 -0.882 -2.291 -1.736 -2.174  

I (1) Δ LGDP -3.184a -3.577a -4.440a -4.615a -3.202a -3.353a -4.187a -4.387a 

LENG  -0.594 -2.509 -1.970 -2.905b  

I (1) 

 -0.558 -2.426 -1.963 -2.517  

I (1) Δ LENG -4.034a -4.124a -5.328a -5.369a -3.520a -3.549a -4.675a -4.821a 

LFFPR -0.920    -1.974 -1.318 -1.346  

I (1) 

 -1.383 -3.186 -2.027 -1.952  

I (1) Δ LFFPR -2.128b   -2.041 -2.229b -2.519 2.827a -3.041a -3.629a -3.846a 

LMLFPR -0.300 -1.541 -0.359 -0.817  

I (1) 

 -1.419 -2.147 -1.246 -1.702  

I (1) Δ LMLFPR -2.037c -1.263 -2.277b -2.336 -2.816a -3.111a -3.471a -3.691a 

 Late-Dividend Panel Post-Dividend Panel 

LCO2 -2.039c -2405  -2.070 -2.337  

I (1) 

-1.504 -2.489 -2.497a -3.092a  

I (1) ΔLCO2 -3.424a -3.597a -4.458a -4.721a -4.150a -4.322a -5.370a -5.609a 
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LPOP -1.376 -2.301 -1.778 -2.613c  

I (1) 

-1.563 -1.555 -1.015 -1.023  

I (1) Δ LPOP -3.348a -4.283a -2.191b -2.975a -3.289a -3.640a -4.408a -4.873a 

LGDP -0.710 -2.480 -2.283b -2.424  

I (1) 

-1.212 -2.011 -2.306a -2.581c  

I (1) Δ LGDP -3.185a -3.332a -3.774a -3.836a -3.192a -3.370a -3.899a -3.995a 

LENG -1.434 -2.086 -2.192b -2.238  

I (1) 

-0.659 -2.325 -1.993 -3.099a  

I (1) Δ LENG -3.280a -3.460a -4.476a -4.763a -4.107a -4.199a -5.118a -5.396a 

LFFPR -1.310 -1.892 -1.283 -1.412  

I (1) 

-1.367 -1.852 -1.801 -1.756  

I (1) Δ LFFPR -2.690a -3.090a -3.616a -4.049a -3.102a -3.439a -4.409a -4.735a 

LMLFPR -0.886 -2.418 -1.550 -1.866  

I (1) 

-1.318 -2.001 -1.856 -2.178  

I (1) Δ LMLFPR -2.824a -2.946a -3.851a -3.990a -3.186a -3.421a -4.543a -4.720a 

 Global-Dividend Panel 

LCO2 -1.058 -2.242 -2.036c -2.030  

I (1) ΔLCO2 -3.485a -3.754a -4.823a -5.119a 

LPOP -2.160a -2.212 -1.835 -2.079  

I (1) Δ LPOP -3.425a -4.326a -2.183a -2.678a 

LGDP -1.561 -2.207 -2.093b -2.149  

I (1) Δ LGDP -3.073a -3.273a -3.882a -4.039a 

LENG -1.387 -2.074 -2.167a 2.343  

I (1) Δ LENG -3.449a -3.590a -4.913a -5.010a 

LFFPR -1..292 -2.025 -1.653 -1.704  

I (1) Δ LFFPR -2.713a -2.967a -3.614a -3.916a 

LMLFPR -1.910b -2.178 -1.448 -1.783  

I (1) Δ LMLFPR -2.837a -3.030a -3.611a -3.842a 

“a “p<.01, “b “p<.05, “c “p<.1 
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Table 7: Newey-West standard errors estimate. 

Dependent 

Variable -

LCO2 

Linear Model Nonlinear Model 

Panel Pre Early Late Post Global Pre Early Late Post Global 

Independen

t Variables 

Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. 

LPOP -0.078a     0.059a     0.077a   0.043a     0.051a -0.118a     0.058a     0.045a   0.028a     0.053a 

LGDP 0.648a     0.292a     0.136a   0.061a     0.108a 0.806a     0.287a     0.159a   0.067a     0.108a 

LENG 0.639a     0.731a     0.885a   0.603a     0.888a 0.538a     0.727a     0.881a   0.574a     0.886a 

LFLFPR -0.140a    -0.172a    -0.068b  -0.297a    -0.208a -3.894a     0.312b  -10.856a 12.818a     0.393a 

LFLFPR2      1.244a    -0.163a     3.269a  -3.762a    -0.194a 

LMLFPR -1.200a    -0.650a    -1.495a  -0.606b    -0.985a -2.009a    -0.627a    -1.677a   -0.133    -0.949a 

Cons 1.513a     0.388b     1.680a   2.192a     1.176a 5.873a     0.032   11.015a  -9.884a     0.647a 

Num of obs 600 1230 870 840 3540 600 1230 870 840 3540 

F-Stat 1234.09

2 

4596.38

7 

1904.99

0 

155.08

5 

12195.61

7 

1662.22

1 

3891.77

3 

1746.50

0 

126.39

3 

10262.40

5 

Prob > F  0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.0000 

“a “p<.01, “b “p<.05, “c “p<.1 
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Table 8. Testing for Multicollinearity. 

Panel Pre 

Dividend 

Early 

Dividend 

Late 

Dividend 

Post Dividend Global 

Variable VIF 1/VIF VIF 1/VIF VIF 1/VIF VIF 1/VIF VIF 1/VIF 

LGDP 3.17 0.315 7.23 0.138 2.78 0.360 2.31 0.433 6.00 0.167 

LENG  3.08 0.325 7.20 0.139 2.61 0.382 1.84 0.543 5.94 0.168 

LMLFPR 1.99 0.502 1.38 0.723 1.26 0.793 1.54 0.649 1.14 0.877 
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LFLFPR 1.33 0.751 1.38 0.723 1.23 0.810 1.31 0.762 1.10 0.906 

LPOP 1.25 0.798 1.38 0.726 1.19 0.839 1.03 0.972 1.09 0.915 

Mean VIF    2.17    3.72    1.82   1.61    3.05 
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