
1 Asian Journal of Social Science and Management Technology

Asian Journal of Social Science and Management Technology

ISSN: 2313-7410

Volume 4, Issue 2, March-April, 2022

Available at www.ajssmt.com

-- -------------------------

Comparative Analysis of Complexity of C++ and

Python Programming Languages

Balogun M.O1,

1
(Department of electrical and Computer Engineering, Faculty of Engineering and Technology/Kwara State

University, Malete, Ilorin, Kwara State, Nigeria)

Keywords –Information content, Lines of code, Potential operand and operator, Program volume, Software

complexity, Software metrics.

-- -------------------

1. INTRODUCTION

Software complexity measures the level of difficulty in analyzing, designing, maintaining, modifying and testing

software ([7]. [3] defines complexity as a measure of the resources consumed by a system while interacting

with a software program to complete a task. [3] goes further by saying that if the interacting system is a

computer, the complexity can be based on execution time and storage requirements, while on the

programmer side, it can be based on difficulty of executing tasks such as writing, debugging, testing and

updating the software. Software metric is applicable in the determination of the complexity of codes written in

any programming languages. However, these metrics must be independent of their implementation and

statically calculated from the code [2].

Software complexity is the all-embracing notion which are factors that decide the level of difficulty in

developing software [10]. With multiple system interfaces and complex requirements, the complexity of

software systems sometimes grows beyond control, rendering applications and portfolios overly costly to

maintain and risky to enhance. The software engineering discipline has established some common measures of

software complexity such as Lines of Code, Halstead Programming volume, cyclomatic complexity measure

and so on.

Source Line of Code (SLOC): This metric is used to measure the quantitative characteristics of program source

code. It is based on counting the lines of the source code. The original purpose of its development was to

estimate man-hours for a project/code. LOC is usually represented as:

ABSTRACT: Software complexity is one of the natural systems complexity which measure the rate at which a

particular software is difficult to comprehend, edit, understand, manipulate and maintain. With various system

interfaces and complex requirements, the complexity of software systems sometimes grows beyond control,

making applications and portfolios too costly to maintain and difficult to improve. A complex software if left

uncorrected can run rambling in the developed code, leaving behind bloated, cumbersome, incomprehensible

and difficult to maintain applications. In this paper, complexity of two object oriented programming languages

(C++ and Python) were compared using some existing complexity measures such as lines of code (LOC) and

Halstead complexity measures. The results of the comparison showed that Python programming language is

less complex than C++ programming language.

http://www.ajssmt.com/
www.ajssmt.com

2 Asian Journal of Social Science and Management Technology

 kLOC: thousand lines of code

 mLOC: million lines of code

Halstead Software Measure was introduced by [6]. It is made up of suite of metrics is known as Halstead

software science or as Halstead metrics. Most of the existing metrics deal with only one particular aspect of a

software product. In contrast, Halstead set of metrics are applicable to software development as well as to

overall production effort [2].

Halstead metrics are based on the following indices:

 n1 distinct number of operators in a program

 n2 distinct number of operands in a program

 N1 total number of operators in a program

 N2 total number of operands in a program

 n1' number of potential operators

 number of potential operands

Halstead refers to and as the minimum possible number of operators and operands for a module or a

program respectively. This minimum number would occur in a programming language itself, in which the

required operation already existed (for example, in C language, any program must contain at least the

definition of the function main ()), possibly as a function or as a procedure; in such a case, =2, since at least

two operators must appear for any function or procedure: one for the name of the function and one to serve

as an assignment or grouping symbol. represents the number of parameters without repetition, which

would need to be passed on to the function or the procedure [12].

Information Content (IC): is the scientific study of communication, quantification and storage needed for

digital information. In efficient coding, information communication-coding theory based on probabilities of

occurrence assigns short codes to events with little information content and long codes to events with high

information content, thereby provides direct relationship of code size to amount of information content [8].

Determination of the information content of a code involves the use of information theory which is

mathematical approach to the study of coding information. The three aforementioned methods were used to

measure the complexity of linear search array code written in C++ and Python programming languages in this

work.

2. LITERATURE REVIEW

[4] carried out a thorough study to determine whether or not the automatic measurement of source code

complexity is possible. A tool for automatic measurement of source code complexity is implemented and it

was proved that automatic complexity measurement is achievable. Detail description about some selected

metrics such as; Cyclomatic Complexity and Halstead metrics was also presented in this work.

 [9] formulated a complexity metric for Python language and made assertion that since Python is an object

oriented language, the formulated metric is capable to evaluate any object-oriented language. The metric was

validated using; case study, comparative study and empirical validation. The case study is in Python, Java and

C++ and the results proved that Python is less complex than other object-oriented languages. Later, validation

of the metric empirically with a real project, which is developed in Python was also carried out.

[10] studied the current state of practice regarding deployment of software metric in software product line

(SPL). The researchers pointed out that there are very few metrics that can assess quality in the contest of

SPLs. It was further discussed that many metrics definitions are rather inaccurate and reuse of metrics across

sub-products has barely taken placed.

[11] developed a model to examine and evaluate the Chidamber and Kemerer (CK) metrics for predictive

capability for errors and degeneration. The model was developed based on the Shannon entropy and the

result shows that the NASA/Rosenberg threshold risk categorization allows for high level of forecasting

http://www.ajssmt.com/

3 Asian Journal of Social Science and Management Technology

[1] applied a set of common static software metrics to programs written in Rust to assess the verbosity,

understandability, organization, complexity, and maintainability of the language. Nine different

implementations of algorithms available in different languages were selected. A set of metrics were computed

for Rust, comparing them with the ones obtained from C and a set of object-oriented languages: C++, Python,

JavaScript, Type Script. To parse the software artifacts and compute the metrics, it was leveraged a tool called

rust-code-analysis that was extended with a software module, written in Python, with the aim of comparing

the results. The Rust code had an average verbosity in terms of the raw size of the code. It exposed the most

structured source organization in terms of the number of methods. Rust code had a better, Halstead Metrics,

and Maintainability Indexes than C and C++ but performed worse than the other considered object-oriented

languages.

3. METHODOLOGY

In this work, the following complexity metrics were used to determine the complexity of linear search

algorithm written in C++ and python programming languages

 Lines of code (LOC)

 Halstead measures

 Information contents

Lines of code (LOC): this is a method of determine the complexity of a code by counting the number of lines in

a code. LOC involves counting the number of executable lines contained in a code omitting the comment lines

and blank spaces. The higher the number of line contained in a code, the more difficult it is to comprehend

and the more complex the code is. Halstead complexity measure was developed by Maurice Howard Halstead

in 1977. Halstead measurement relies on program execution and its measures which involves analysis of the

operators and operands from the source code. Halstead measure can be used to determine some important

information about a code such as; testing time, vocabulary, program volume, programming time, number of

bug and so on [5]. The intention of Halsted was to see each program as a group of operators with its related

operands. Checking the program/code line by line with intention of distinguishing among operators and

operands and also to determine number of operators and operands. Halstead complexity measure is based on

the following:

 = number of unique or distinct operators, = number of unique or distinct operands,

 = total number of occurrences of operators, = total number of occurrences of operands,

 = Number of distinct operators and = Number of distinct operands

Information Content (IC): is the scientific study of communication, quantification and storage needed for

digital information. It is determine by finding the inverse of program volume to program difficulty.

3.1 LINEAR SEARCH ARRAY (ARR) FOR BINARY NUMBERS Written in C++ Language

/* C++ Program to search an element

in a sorted and pivoted array*/

#include <bits/stdc++.h>

using namespace std;

/* Standard Binary Search function*/

int binary Search(int arr[], int low,

int high, int key)

{

if (high < low)

return -1;

int mid = (low + high) / 2; /*low + (high - low)/2;*/

return mid;

http://www.ajssmt.com/

4 Asian Journal of Social Science and Management Technology

if (key > arr[mid])

return binary Search (arr, (mid + 1), high, key);

// else

return binarySearch(arr, low, (mid - 1), key);

}

/* Function to get pivot. For array 3, 4, 5, 6, 1, 2

it returns 3 (index of 6) */

int findPivot(int arr[], int low, int high)

{

// base cases

if (high < low)

return -1;

if (high == low)

return low;

int mid = (low + high) / 2; /*low + (high - low)/2;*/

if (mid < high andand arr[mid] > arr[mid + 1])

return mid;

if (mid > low andand arr[mid] < arr[mid - 1])

return (mid - 1);

if (arr[low] >= arr[mid])

return findPivot(arr, low, mid - 1);

return findPivot(arr, mid + 1, high);

}

/* Searches an element key in a pivoted

sorted array arr[] of size n */

int pivoted Binary Search(int arr[], int n, int key)

{

int pivot = find Pivot(arr, 0, n - 1);

// If we didn't find a pivot,

// then array is not rotated at all

if (pivot == -1)

return binary Search(arr, 0, n - 1, key);

// If we found a pivot, then first compare with pivot

// and then search in two subarrays around pivot

if (arr[pivot] == key)

return pivot;

if (arr[0] <= key)

return binary Search(arr, 0, pivot - 1, key);

return binary Search(arr, pivot + 1, n - 1, key);

}

http://www.ajssmt.com/

5 Asian Journal of Social Science and Management Technology

/* Driver program to check above functions */

int main()

{

// Let us search 3 in below array

int arr1[] = { 5, 6, 7, 8, 9, 10, 1, 2, 3 };

int n = sizeof(arr1) / sizeof(arr1[0]);

int key = 3;

// Function calling

cout << "Index of the element is : "

<< pivoted Binary Search(arr1, n, key);

return 0;

}

Table 1: The Various Operators and Operands Used in Coding the Linear Search Array for Binary Numbers

Using C++ Programming Language

Operators Occurrences operands Occurrences

Int 20 X 7

() 1 N 7

, 45 I -

[] 5 J -

If 13 Key 14

* 14 Low 16

< 6 2 6

; 25 1 21

For 1 0 6

= 8 3 5

– 1 4 2

{ 5 5 2

} 4 6 3

<= 1 7 1

== 4 8 1

// 8 9 2

Return 16 10 1

<< 2 - -

Pivot 19 - -

Mid 18 - -

“ 2 - -

and& 2 - -

Arr 29 - -

n1=22 N1=249 n2=15 N2=94

Halstead Measures are calculated below:

The program length (N)

 = 343m

The vocabulary (n)

http://www.ajssmt.com/

6 Asian Journal of Social Science and Management Technology

 = 37

The Program difficulty (D)

 =)

 = 68.933

Program Volume (V)

 =1786.687

 =1786.7m
3

The Effort (E)

 E = D * V

 = 68.9333 * 1786.7

 = 123162.591j(s)

Programming Time T(s)

 = 6842.36s

BUGS (B)

 = 0.595(m)

The Information Content (IC) is calculated as follows:

 = 25.919

3.2 Linear Search Array (Arr) for Binary Numbers Written in Python Programming Language.

Python Program to search an element

in a sorted and pivoted array

Searches an element key in a pivoted

sorted array arrp [] of size n

def pivoted Binary Search (arr, n, key):

pivot = findPivot (arr, 0, n-1);

If we didn't find a pivot,

if pivot == -1:

return binary Search (arr, 0, n-1, key);

If we found a pivot, then first

compare with pivot and then

search in two subarrays around pivot

if arr [pivot] == key:

return pivot

if arr[0] <= key:

http://www.ajssmt.com/

7 Asian Journal of Social Science and Management Technology

return binary Search (arr, 0, pivot-1, key);

return binary Search (arr, pivot + 1, n-1, key);

Function to get pivot. For array

3, 4, 5, 6, 1, 2 it returns 3

(index of 6)

def findPivot (arr, low, high):

base cases

if high < low:

return -1

if high == low:

return low

low + (high - low)/2;

mid = int ((low + high)/2)

if mid < high and arr [mid] > arr [mid + 1]:

return mid

if mid > low and arr [mid] < arr [mid - 1]:

return (mid-1)

if arr [low] >= arr [mid]:

return findPivot (arr, low, mid-1)

return findPivot (arr, mid + 1, high)

Standard Binary Search function*/

def binarySearch (arr, low, high, key):

if high < low:

return -1

low + (high - low) /2;

mid = int ((low + high) /2)

if key == arr [mid]:

return mid

if key > arr [mid]:

return binarySearch (arr, (mid + 1), high, key);

return binarySearch (arr, low, (mid -1), key);

Driver program to check above functions */

Let us search 3 in below array

arr1 = [5, 6, 7, 8, 9, 10, 1, 2, 3]

n = len (arr1)

key = 3

print ("Index of the element is : ",

pivotedBinarySearch (arr1, n, key))

http://www.ajssmt.com/

8 Asian Journal of Social Science and Management Technology

Table2: The various operators and operands used in coding the linear search array for binary numbers Written

in Python programming language.

operators occurrences Operands Occurrences

Def 3 N 7

() - Key 14

, 45 Low 16

[] 1 2 6

If 13 1 17

< 5 0 4

; 8 - -

For 1 - -

= 9 - -

– 1 5 2

<= 1 High 12

== 4 6 3

Return 15 7 1

Pivot 17 8 1

Mid 18 9 1

17 10 1

Arr 25 - -

n1=14 N1=145 n2=13 N2=85

The program length (N)

 = 230m

The vocabulary (n)

 n = 27

The program difficulty (D)

 = (7 * 1.706)

 = 11.942

Program Volume (V)

 = 1093.65m
3

The effort (E)

 E = 13,060.37

Programming Time (T)

 T(s) = 81.72

 = 1hr.22 s

BUG (B)

http://www.ajssmt.com/

9 Asian Journal of Social Science and Management Technology

 = 0.365

Information Content (IC)

 =91.580

4. Results and Discussion

Table 3: Calculation of the Complexity of Linear Search Array Written in C++ Using Line of Code (LOC)

Table 4: The Result Implementation of Some Metrics Using C++ Programming Language

Complexity Measures Values

Program vocabulary 1787

Program length

343

Program difficulty 68.933

Program Effort

123,162.591

Bugs

 0.595

Total Lines of codes (LOC)

 79

Program Volume

 1786.7

Information content

25.919

Complexity Measure Value (s)

Length (in lines) 79

LOC without comments 67

LOC plus comments 13

Blank lines 14

http://www.ajssmt.com/

10 Asian Journal of Social Science and Management Technology

Table 5: The Result Implementation of the Lines of Codes Metrics Using Python Programming Language

Complexity Measures Values

Length Of the code 64

LOC without comments 35

LOC plus comments 15

Table6: The Result of Implementation of Some Metrics Calculated in the Linear Search Array Python

Programming Language

Complexity Measures Values

Program Vocabulary

27

Program Length

230

Program Difficulty

11.942

Program Effort

13,060.37

Bugs

0.365

Total Lines of Codes (LOC) 64

Program Volume 1093.65

Information Content

91.580

Table 7: Comparison of the Complexity Measures of C++ and Python Programming Languages

Complexity Measures C++ Python

Program Vocabulary 1787 27

Program Length

343 230

Program Difficulty 68.933 11.942

Program Effort

123,162.591 13,060.37

Bugs 0.595 0.365

http://www.ajssmt.com/

11 Asian Journal of Social Science and Management Technology

Total Lines of Codes (LOC) 79 64

Program Volume

 1786.7 1093.65

Information Content

25.919 91.580

Tables 3 and 5 show the complexity values gotten using LOCs, it can be seen from the tables that python

programming language has less lines of code than C++. Tables 4 and 6 also show the complexity values gotten

using Halstead complexity measures. Table7 gives the summary of the complexity values gotten from linear

search array written in C++ and Python programming languages. It can be seen from the table that the total

lines of code for C++ and Python are 79 and 64 respectively. The lower the lines contained in a code, the less

complex the code. The program vocabulary produced by C++ is 1787 which is far more than that of Python

that is just 27. It can also be observed from the table that C++ generated 343, 68.933, 123,162.591 and 1786.7

for program length, program difficulty, program effort and program volume respectively, while, that of Python

are 230, 11.942, 13,060.37, 1093.65 respectively. The higher complexity values produced by C++ programming

language shows that it is more complex than Python programming language.

5. Conclusion

Software complexity is a very crucial characteristic that must be taken into consideration by the software

engineers and end users. A too complex software will be difficult to evaluate and maintain. Therefore, when

embarking on software development, it is advisable to develop the source code using a less complex

programming language for better resource management and ease of maintenance of the source code. This

work compares the complexity of two object oriented programming languages (C++ and Python), in which the

complexity values produced by Python programming language is far lesser than those produced by C++, it is

concluded that Python programming language is less complex than C++ programming language.

6. REFERENCES

[1] Ardito, L., Barbato, L., Coppola, R., and Valsesia, M. Evaluation of Rust code verbosity, understandability and

complexity, Peer Journal of Computer Science, 7, e406, 2021.

[2] Basci, D., and Misra, S. Measuring and Evaluating a Design Complexity Metric for XML Schema Documents,

Journal of Information Science and Engineering, 25, 2021, 1415–1425.

[3] Basili V. R. Qualitative software complexity models: A Summary in Tutorial on Model and Methods for

Software Management and engineering, IEEE Computer Society Press, Los Alamitos, Calif., 1980.

[4] Bhatti, H. R. Automatic Measurement of Source Code Complexity, A Master Thesis in Computer Science and

Engineering, urn:se:Itu:diva-46648, 2011.

[5] Chandra Segar Thirumalai, Hariprasad T, Vidhyagaran G and Seenu K. Software Complexity Analysis Using

Halstead Metrics; International Conference on Trends in Electronics and Informatic, 2017, 1109 – 1112.

[6] Halstead M. H. Element of Software Science, Operating and Programming Systems Series, Elsevier North-

Holland, Inc. ISBN 0-444-00205-7, 1977.

[7] Horst Zuse, Criteria for Program Comprehension Derived from Software Complexity Metrics. IEEE Second

Workshop on Program Comprehension, 1993, 8-16.

[8] Jack Belzer, Information theory as a Measure of information Content; Journal of the American Society for

Information Science. V 24 (4), 1973, 300-304.

[9] Misra, Sanjay, and Cafer, F., Estimating complexity of programs in python language, Technical Gazette, 18(1),

2011, 23–32.

[10] Sascha E-S, Nozomi Y-E, Klaus S., Metrics for Analyzing Variability and its Implementation in Software Product

Lines: A systematic Literature Review, Inform Softw Technol., 2019, 106: 1-30.

[11] Selvarani R., Gopalakrishnan Nair TR, Ramachandran M. and Prasad K., software metrics evaluation based on

entropy. In:IGI Global, 2010, 139-151.

http://www.ajssmt.com/

12 Asian Journal of Social Science and Management Technology

[12] Misra Sanje, Ibrahim Akman and Ricardo Colomo-Palacios, Framework for Evaluation and Validation of

software Complexity Measures, IET Software 6 (4), 2012, 323-334.

INFO

Corresponding Author: Balogun M.O, Department of electrical and Computer Engineering, Faculty of

Engineering and Technology/Kwara State University, Malete, Ilorin, Kwara State, Nigeria.

How to cite this article: Balogun M.O, Comparative Analysis of Complexity of C++ and Python Programming

Languages, Asian. Jour. Social. Scie. Mgmt. Tech.2022; 4(2): 01-12.

http://www.ajssmt.com/

